Pharmacobotanical and pharmacological evaluation of ayurvedic crude drug: *Rauwolfia serpentina* (Apocynaceae)

Saveena Chauhan¹, Amrinder Kaur¹, R. K. Pareek²

¹Department of Ayurveda, School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India, ²Department of Basic Principle, Ayujyoti Ayurvedic Medical College, Sirsa, Haryana, India

Abstract

Rauwolfia serpentina has been used since pre-vedic period for the treatment of snake bite (*sarpadansh*), insect stings, hypertension (*Rakta Capa Vriddhi*), insomnia (*anidra*), psychological disorders (*manovikar*), gastrointestinal disorders (*Amashay gata roga*), epilepsy (*apasmar*), wounds (*vrana*), fever (*jwara*), and schizophrenia (*unmada*). It is a large glabrous herb or shrub, belonging to family Apocynaceae, and found in the Assam, Pegu, Himalayas, Java, Tennasserim, Deccan, Peninsula, Bihar, and the Malay Peninsula. It is a source of many phytoconstituents including alkaloids, carbohydrates, flavonoids, glycosides, phlobatannins, phenols, resins, saponins sterols, tannins, and terpenes. The main alkaloid of *R. serpentina* is reserpine. It exerts antihypertensive property by depleting the catecholamine which is the main action of the plant. Besides, many studies have been describing multidimensional pharmacological activities of the *R. serpentina*. Hence, the present review describes ancient to modern approach based on pharmacobotanical and pharmacological studies of *R. serpentina*.

Key words: Apocynaceae, hypertension, *Rauwolfia serpentina*, reserpine

INTRODUCTION

Rauwolfia serpentina (Linn.) Benth. Ex Kurz is a glabrous herb or shrub, belonging to family Apocynaceae. The genus name was selected in honor of Dr. Leonhard Rauwolf, a 16th century German botanist, physician, and explorer. The root of *R. serpentina* has been used in India from centuries, especially in hypertension.¹ The drug is also reported for sedative and hypnotic properties.² The plant is found in the tropical Himalayas in lowers Hills of Himachal Pradesh, Uttarakhand, Jammu and Kashmir, and at moderate altitude in Sikkim, North Bihar, Patna, Uttar Pradesh, Bhagalpur, Bengal, Konkan, Assam, Burma, Sri Lanka, Andaman, Pegu, Tenasserim, and Deccan Peninsula along with the Ghats of Travancore and Ceylon, Java, and Malay Peninsula.³ Mostly, it is found at 4000 ft height of the sea level in moist jungle and shaded areas. Cultivation of Rauwolfia is started in different areas of India as Dehradun, Lucknow, Jammu, and Indore.³

R. serpentina has been used since pre-Vedic period for the treatment of snake bite (*sarpadansh*), insect stings, hypertension (*Rakta Capa Vriddhi*),⁴ insomnia (*anidra*), psychological disorders (*manovikar*), gastrointestinal disorders (*amashaygata roga*), epilepsy (*apasmar*), wounds (*vrana*), fever (*jwara*), and schizophrenia (*unmada*).⁵ It has been very well described and used by the ancestors of Ayurveda. Acharya Charaka⁶ described it as Nakuli, ingredient of vachadi yoga which is used for the treatment of poisoning. Whereas, Susrut⁷ (600 BC) has been included it in Aparajita Gana and Eksara Gana known to treat the mental disorders and rat poisoning, respectively. Vrindamadhava⁸ described its use in the treatment of gastroenteritis (*Visuchika*). In Dhanvantari Nighantu,⁹ it is described as Nakuli with other synonyms such as sugandha and katushna and also reported in the treatment of rat poisoning. Bhavprakash⁹ described it as a type of rasna, synonyms, and description of *R. serpentina*.

Address for correspondence:

Amrinder Kaur, Department of Ayurveda, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144 411, Punjab, India.
Phone: +91-7307552903.
E mail: Amrinder.kaur@lpu.co.in

Received: 23-08-2017
Revised: 05-12-2017
Accepted: 16-12-2017
In Siddha system of medicine, R. serpentina roots are also used to treat hypertension associated cerebral pain, woziness, amenorrhea, and oligomenorrhea. In Unani system, R. serpentina is used as a nerve tonic (Musakkin-e-Asab), sedative and hypnotic (Musakkin-wo-Munawwim), diuretic (Mudir), and anesthetic (Mukhaddir).

VARIOUS VERNACULAR NAME AND SYNONYMS OF R. SERPENTINA

Every plant has been identified by their vernacular name throughout the world. These names are mandatory for the ethnobotanical study of a specific tribe. These names are generally based on the appearance, shape, size, habit, habitat, smell, taste, color, utility, therapeutic uses, and other distinguish characteristics of the plants. The vernacular names and synonyms of the R. serpentina are mentioned in Table 1.

AYURVEDIC PROPERTIES

Rasa (taste) - Tikta (bitter)[10] and Katu (pungent)[12]

Guna (property) - Ruksha (dry)[2] and Laghu (light)[12]

Vira (potency) - Ushna (hot)[9]

Vipaka (metabolism) - Katu (pungent)[13]

Prabhava (specific action) - Nidrajanan (sedative)[13] and Kaphavatahar[14]

Table 1: Synonyms and vernacular names of R. serpentina

<table>
<thead>
<tr>
<th>Language</th>
<th>Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banaras</td>
<td>Dhavalbarua[38]</td>
</tr>
<tr>
<td>Bombay</td>
<td>Harkai,[9] Chandra[3]</td>
</tr>
<tr>
<td>Marwadi</td>
<td>Charka,[17] Harki[17]</td>
</tr>
<tr>
<td>Tulu</td>
<td>Patala-garudada-beru[9]</td>
</tr>
<tr>
<td>Gujrati</td>
<td>Amelpodi[13]</td>
</tr>
<tr>
<td>Gwalior</td>
<td>Naya[9]</td>
</tr>
<tr>
<td>Farasi</td>
<td>Chhotachanda[10]</td>
</tr>
</tbody>
</table>

R. serpentina: Rauwolfia serpentina
fissures. On breaking, it is circular with centripetal lines [Figure 2].

Microscopy of Root

The transverse section of Rauwolfia root having outermost multilayered stratified cork composed of alternate bands of 5–10 rows of a small suberized cells and 2–5 rows of big-sized lignified cells, phelloderm is parenchymatous embedded with starch grains and small-sized twin prismatic crystals of calcium oxalate. Phloem is narrow, parenchymatous, traversed with medullary rays, latex cells, calcium oxalate crystals, and starch grains; cambium ring is distinct, xylem is lignified, composed of few small-sized isolated or radially arranged xylem vessels, tracheids, and fibers alternating with uni- or multi-serate medullary rays, and parenchymatous cells are pitted and embedded with starch grains.

Powder Characteristics of Root

Powder is coarse to fine, yellowish-brown, free-flowing, odor slight, and bitter in taste and characterized by stratified cork cells 8–10 layers, phalloderm cells 10–12 layers in which spherical, simple to compound starch grains, calcium oxalate prisms, and clusters are present. Vessels with simple perforation, occasionally tailed, lignified tracheids, and xylem fibers are present which are irregular in shape, occur singly or in small groups, walls are lignified, tips occasionally forked or truncated, wood parenchyma cells are filled with calcium oxalate crystals and starch grains, whereas, stone cells and phloem fibers are absent.

Chemical Constituents

R. serpentina is a rich source of different varieties of chemical constituents. Alkaloids identified in Rauwolfia include ajmalicine, reserpine, serpentinine, ajmaline, ajmalimine, deserpidine, indobidine, reserpiline, rescinnamine, rescinnamidine, serpentine, and yohimbine. The main alkaloid of *R. serpentina* is reserpine. It exerts antihypertensive property by depleting the catecholamine. Rescinnamine has the same activity like reserpine; however, it inhibits angiotensin-converting enzyme (ACE) that catalysis conversion of angiotensin I, resulting in a decrease of plasma angiotensin II. Ajmaline possesses arrhythmogenic effect by blocking the sodium channel. Serpentine has antipsychotic property because it inhibits type II topoisomerase. Yohimbine is selective alpha-adrenergic antagonist in blood vessels for the treatment of erectile dysfunction. High concentration of phenols *R. serpentina* reveals significant anti-diabetic and hypolipidemic properties, and it can also inhibit type II topoisomerase.

Figure 1: Sarpagandha whole plant

Figure 2: Sarpagandha root

Figure 3: Chemical structures of main constituents of *Rauwolfia serpentina*
be used as antimicrobial agent. Flavonoids of *R. serpentina* help preventing the oxidative cell damage and having anticancer, anti-inflammatory, and antioxidant property.\[^{18}\] The presence of saponins is responsible for the hemolytic activity and cholesterol binding property.\[^{19}\] *R. serpentina* is also rich in macro- and micro-nutrients which supports its therapeutic properties, i.e., calcium (Ca), phosphorus (P), potassium (K), magnesium (Mg), sodium (Na), iron (Fe), and zinc (Zn) [Figure 3].\[^{14}\]

VARIETIES OF R. SERPENTINA

Rauwolfia tetraphylla is also widely supplied as Sarpagandha.\[^{16}\] Its actions are quite similar to *R. serpentina*. It is reported that *Rauwolfia* has about 26 different species such as *Rauwolfia densiflora* (contains sclerenchyma), *Rauwolfia tetraphylla* (has uniform cork, abundant sclereids of fibats but devoid of resinnunine), *Rauwolfia vomitoria* (having very larry vessels), *Rauwolfia conescence*, *Rauwolfia beddomei*, *Rauwolfia caffra*, *Rauwolfia cummsinsi*, *Rauwolfia obscura*, *Rauwolfia rosea*, *Rauwolfia mambasiana*, *Rauwolfia volkensii*, *Rauwolfia nitida*, and *Rauwolfia oreogiton*. All varieties of *Rauwolfia serpentine* contain reserpine.\[^{19}\]

In Vitro Studies

In vitro studies based on *R. serpentina* summarized in Table 2 and compiled are as follows:

Antioxidant Activity

Nair *et al.* investigated the antioxidant effect of *R. serpentina*. Methanolic extract of leaves of five species of *Rauwolfia* (*R. beddomei*, *R. micrantha*, *R. serpentina*, *R. tetraphylla*, and *R. densiflora*) was used for evaluating total antioxidant capacity, 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging activity, reducing power and superoxide anion scavenging activity, and determination of tocopherols, phenolics, flavonoids, carotenoids, ascorbic acid, and pigment composition. *R. serpentina* exhibits the highest total phenolic content, DPPH radical scavenging activity, and highest pigment composition of Vitamin E content among the five species. Whereas, *R. tetraphylla* had highest flavonoidal content, concentration of β carotene, lycopene, and other nutrient composition, and least amount was found in *R. beddomei*.\[^{20}\]

Rathi *et al.* used ethanolic root extract of *R. serpentine* for combating the oxidation stress, free radicals using ferric

<table>
<thead>
<tr>
<th>Table 2: In vitro pharmacological activity of R. serpentina</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. serpentina part used</td>
</tr>
<tr>
<td>-----------------------------</td>
</tr>
<tr>
<td>Antioxidant activity</td>
</tr>
<tr>
<td>Leaves</td>
</tr>
<tr>
<td>Roots</td>
</tr>
<tr>
<td>Antihypertension activity</td>
</tr>
<tr>
<td>Leaves</td>
</tr>
<tr>
<td>Antivenom activity</td>
</tr>
<tr>
<td>Whole plant</td>
</tr>
<tr>
<td>Whole plant</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3: In vitro antibacterial activity of R. serpentina</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. serpentina part used</td>
</tr>
<tr>
<td>-----------------------------</td>
</tr>
<tr>
<td>Roots</td>
</tr>
<tr>
<td>Roots</td>
</tr>
<tr>
<td>Roots and leaves</td>
</tr>
<tr>
<td>Roots and leaves</td>
</tr>
</tbody>
</table>

R. serpentine: *Rauwolfia serpentine*
reducing ability of plasma or plants method. A significant effect of extract was found for the activity.[21]

Antibacterial Activity

Following antibacterial activity has been given in Table 3.

Rathi \textit{et al.} explored the antibacterial activity of \textit{R. serpentina}. Ethanolic extract of root was evaluated using well-diffusion method. Two Gram-positive (\textit{Bacillus subtilis} and \textit{Staphylococcus}) and three Gram-negative bacteria (\textit{Klebsiella pneumoniae}, \textit{Pseudomonas aeruginosa}, and \textit{Salmonella typhimurium}) were used for the activity of which only three bacteria \textit{Klebsiella pneumonia}, \textit{Staphylococcus}, and \textit{B. subtilis} bacteria are found susceptible.[21]

Negi \textit{et al.} studied the antibacterial activity of methanolic extract of roots (MREt) of \textit{R. serpentina}. Antibacterial activity was evaluated using agar well-diffusion method against Gram-positive and Gram-negative bacteria for the determination of minimum inhibitory concentration (MIC) and the diameter of zone of inhibition (ZOI). The study revealed that \textit{Staphylococcus aureus} shows a highest ZOI (13 mm) with lowest MIC (625 µg) and \textit{Escherichia coli} possess the highest MIC (10 mg), whereas \textit{Proteus vulgaris} was observed resistant to tested extracts up to 10 mg. Hence, \textit{R. serpentina} exhibited strong antibacterial activity.[22]

Murthy \textit{et al.} used methanolic and chloroform extracts of leaf and root of \textit{R. serpentina} for antibacterial activity. The activity was assessed against \textit{S. aureus}, \textit{E. coli}, \textit{P. aeruginosa}, \textit{B. subtilis}, and \textit{K. pneumoniae} by disk diffusion method. 50 µl/ml concentrations of leaf and root chloroform extracts showed no ZOI against \textit{S. aureus} and \textit{B. subtilis}. Maximum zone inhibition was observed 15.0 mm and 15.5 mm against \textit{E. coli} for leaf and root extract, respectively. 100 µl/ml concentration showed maximum zone inhibition against all test organisms for both leaf and root extract. All the bacteria were more susceptible to methanolic extract than chloroform.[23]

Antihypertension Activity

Ranjini \textit{et al.} have studied the effect of aqueous extract of \textit{R. serpentina} leaves along with the \textit{Allium sativum} cloves on sheep kidney and lung ACE. Hippuryl-Hiaitdyl-Leucine method was used to measure the activity, and hippuric acid release was measured by spectrophotometric analysis at

<table>
<thead>
<tr>
<th>\textbf{R. serpentina part used}</th>
<th>\textbf{Extract}</th>
<th>\textbf{Animal}</th>
<th>\textbf{Method}</th>
<th>\textbf{Dose}</th>
<th>\textbf{References}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypolipidemic activity</td>
<td>Roots</td>
<td>Powder</td>
<td>Rabbits</td>
<td>30 mg/kg</td>
<td>Shamim \textit{et al.}</td>
</tr>
<tr>
<td>Hepatoprotective activity</td>
<td>Rhizome</td>
<td>Aqueous ethanol</td>
<td>Albino rats</td>
<td>425 mg/kg</td>
<td>Gupta \textit{et al.}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Methanolic</td>
<td>Albino rats</td>
<td>400 mg/kg</td>
<td>Gupta \textit{et al.}</td>
</tr>
<tr>
<td>Hyperglycemic activity</td>
<td>Roots</td>
<td>Methanolic</td>
<td>Mice</td>
<td>60 mg/kg</td>
<td>Azmi \textit{et al.}</td>
</tr>
<tr>
<td>Antidiabetic activity</td>
<td>Roots</td>
<td>Methanolic</td>
<td>Mice</td>
<td>10, 30, 60 mg/kg</td>
<td>Azmi \textit{et al.}</td>
</tr>
<tr>
<td>Anti-diarrheal activity</td>
<td>Leaves</td>
<td>Methanolic</td>
<td>Mice</td>
<td>100, 200 and 400 mg/kg</td>
<td>Ezeigbo \textit{et al.}</td>
</tr>
<tr>
<td>Antivenom activity</td>
<td>Whole plant</td>
<td>Ethanolic</td>
<td>Patients</td>
<td>0.14 mg</td>
<td>Rajashree \textit{et al.}</td>
</tr>
<tr>
<td></td>
<td>Whole plant</td>
<td>Aqueous</td>
<td>-</td>
<td>10.99 mg</td>
<td>James \textit{et al.}</td>
</tr>
</tbody>
</table>

\textit{R. serpentina: Rauwolfia serpentine}
228 nm. The significant anti-hypertensive effect was found in the study.[24]

Antivenom Activity

Rajashree et al. reported antivenom activity of the ethanolic extract of the whole plant of *R. serpentina* by neutralizing the toxic effect of *Naja naja* venom. About 0.14 mg of *R. serpentina* plant extract was able to completely neutralize the lethal activity of 2LD50 of *N. naja* venom.[25]

James et al. explored the venom neutralizing potential of the aqueous extract of *R. serpentina* by procoagulant, direct, and indirect hemolytic activities. In it, *R. serpentina* plant extract was effectively neutralize all the toxic effects induced by the *Daboia russelli* venom.[26]

In Vivo Studies

In vivo studies of different pharmacological activities based on *R. serpentina* summarized in Table 4 and compiled are as follows:

Hypolipidemic activity

Shamim et al. investigated the hypolipidemic activity of root powder of *R. serpentina* when administered to rabbits orally for 12 days. The blood was collected from each group on 1st, 4th, 8th, and 12th day to estimate the serum triglyceride (TG), total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C), high-density lipoprotein-cholesterol (HDL-C), alanine aminotransferase (ALT), and lactate dehydrogenase, respectively. The test revealed the significant hypolipidemic activity.[27]

Hepatoprotective Activity

Gupta et al. investigated the hepatoprotective activity of aqueous ethanolic extract (AET) of the root of *R. serpentina* against paracetamol-induced hepatic damage in rat. The AET has reversal effect on the level of liver glutathione, Na+ K+-ATPase activity, serum marker enzyme, serum bilirubin and thiorbarbituric acid, liver glutathione peroxide, glutathione-S-transferase, glutathione reductase, superoxide dismutase, catalase, and glycogen. Hepatoprotective activity was observed due to oxidant effect and normalization of impaired membrane function activity.[28]

Gupta et al. investigated the free radical scavenging activity of MREt of *R. serpentina* using CCl\textsubscript{4}-induced hepatotoxicity model in albino rats. The extract significantly exhibits free radical scavenging activity by showing an increased level of glutathione peroxide, glutathione-S-transferase, glutathione reductase, superoxide dismutase, catalase, and glutathione and decreased level of lipid peroxidation. The MREt shown prominent antioxidant activity and CCl\textsubscript{4}-intoxicated liver recovery.[29]

Hyperglycemic Activity

Azmi et al. investigated the effect of MREt of *R. serpentina* on hyperglycemic, hematonic, and antioxidative dysfunctioning with alloxan-induced diabetic mice model for 14 days. Mice are divided into normal, diabetic, treated test, and positive and negative control groups. Considerable decrease was observed on blood glucose level by improving various other mechanisms. MREt restores the liver functions by recovering the protein concentration and normalizing the level of ALT, alkaline phosphatase, and aspartate aminotransferase in test mice.[30]

Antidiabetic Activity

Azmi et al. studied the atherogenic dyslipidemia, arteriosclerosis, and glycosylation index of MREt of *R. serpentina* in alloxan-induced type-1 diabetic mice for 14 days. 42 mice were divided into diabetic control, negative, positive, and normal control with three test dose groups. After 14 days of respective treatments, fasting blood glucose, insulin, hemoglobin (Hb), glycosylated HbA1c, TG, TC, LDL-C, very LDL-C, and HDL-C levels were determined with other parameters. A significant reduction in glycosylation, atherogenic, arteriosclerosis, and non-HDL-C was observed. The obtained results highlighting therapeutic potential of MREt in lowering the risk of atheregenic dyslipidemia, arteriosclerosis and glycosylation in alloxan-induced diabetic mice.[31]

Antidiarrheal Activity

Ezeigbo et al. evaluated the antidiarrheal property of methanolic extract of leaves of *R. serpentina* in castor oil-induced diarrhea in mice. The dose of 100, 200, and 400 mg kg of extract was administered to the mice. The dose-dependent reduction in intestinal weight and fluids volume was observed which are responsible for antidiarrheal effect of *R. serpentina*.[32]

Antivenom Activity

Rajashree et al. reported antivenom activity of the ethanolic extract of *R. serpentina*. Theakston and Reid 1983 method was used for the determination of median lethal dose (LD50) of *N. naja* venom. The plant extract significantly reduced the lethal effect of the *N. naja* venom. About 0.14 mg of *R. serpentina* plant extract was sufficient to neutralize the lethal effect of 2LD50 of *N. naja* venom.[25]

James et al. explored the venom neutralizing potential of the aqueous *R. serpentina* extract in mice. In this study, the venom lethality dose of LD of *D. russelli* venom was found to be 0.628 µg/g which effectively neutralized by 10.99 mg/3LD of *R. serpentina* plant extract. The LD of *R. serpentina* plant
extract was >2000 mg/kg. These findings confirmed that *R. serpentina* plant extract possesses some compounds which inhibit the toxins present in *D. russelli* venom.\(^{26}\)

CLINICAL STUDIES

Antihypertensive Activity

Alka *et al.* evaluated antihypertensive activity of polyherbal compound M - Sarpagandha Mishran on 41 patients of essential hypertension without any comorbid illness. The patients were administered M - Sarpagandha Mishran for 8 weeks and blood pressure was monitored at 2\(^{nd}\), 4\(^{th}\), 6\(^{th}\), and 8\(^{th}\) week. Changes in diastolic, systolic, and mean arterial blood pressure were analyzed. A significant fall in blood pressure was found in all the patients.\(^{33}\)

Coronary Artery Disease

Lewis *et al.* reported the therapeutic spectrum of *R. serpentina* in angina syndrome in accordance with double-blind technique. Fifteen patients of coronary artery disease and angina pectoris were administered the alternatively with alseroxylon fraction of *R. serpentina* and placebo. Alseroxylon revealed prolonged therapeutic effect.\(^{34}\)

CONCLUSION

The extensive literature survey revealed that *R. serpentina* is being used since pre-Vedic period to treat various ailments including hypertension, insomnia, psychological disorders, gastric disorders, epilepsy, wounds, fever, and schizophrenia. Recent studies also suggest a role of its various constituents for the wide array pharmacological and therapeutic properties. However, detail phytochemical, pharmacological, and clinical studies are required to validate the effect of *R. serpentina* and its constituent.

REFERENCES

22. Negi JS, Bhist VK, Bhandari AK, Bhist DS, Singh P, Singh N. Quantification of reserpine content and antibacterial activity of *Rauwolfia serpentina* (L.) Benth.
Chauhan, et al.: A review on *Rauwolfia serpentina* (Apocynaceae)

Source of Support: Nil. **Conflict of Interest:** None declared.