Determining optimal amplification parameters and assessing specificity of developed primers

Juliya Golubtsova

Department of Biotechnology, The State Educational Institution of Higher Education, “The Kemerovo Technological Institute (University) of Food Industry,” 650056, Kemerovo, Stroiteley Boulevard, 47, Russia

Abstract

Objective: The aim of the study is to determine optimal amplification parameters and assess specificity of developed primers. Methods: Algorithmic analysis of sequences has been performed, and optimal locations for primers have been searched for the use of the PrimerQuest application with indication of the maximum size of the amplicon read by a couple of primers in the settings. Among the variants of primers proposed by the application, optimal pairs have been chosen for each type of fruit-and-berry raw materials, with regard to such parameters as length of the primer, annealing temperature, and amplicon location. Results: The optimal parameters of the amplification process have been defined volume of primers and amplification mode. The chosen mode of amplification was confirmed by the results of the polymerase chain reactions with all the samples of the fruit-and-berry raw materials with visualization in the form of the electrophoretogram. Additional check of primers specificity has been performed with the use of the BLAST algorithm. Conclusion: It has been determined that all sequenced fragments that can be read by each of the pairs of the developed primers coincided with those deposited in the GeneBank by sequences of the studied raw materials.

Key words: Amplification, electrophoretogram, fruit-and-berry raw materials, primers

INTRODUCTION

The use of short oligonucleotide primers allows to differentiate various samples of fruit-and-berry raw materials. The difficulty lies in the fact that the primers are to be universal - they should equally well amplify DNA fragments from both raw materials, for example, fresh fruits and heat-treated products, e.g., jam. However, it is known now that the expected size of the amplicon of heat-treated material will not be >270–300 pairs of nucleotides. Therefore, it is necessary to develop primers that reliably amplify fragments with the length of 300 bps. The amplified fragment also has to contain a certain amount of single nucleotide polymorphism, i.e., to be fully conservative - this will make it more likely to correctly define the object. At the same time, availability of conservative DNA sections is required for planting the primers. In works of this kind, more often than the other ones, rDNA (RNA) genes are used - 18S, 5.8S, and 26S, separated by internal transcribed spacers ITS1 and ITS2. This is due to the functional presence of evolutionary labile and conservative regions in it, within the same recurring area, to the widespread presence in all known organisms of sequences used for comparison, expanding the number of the ones deposited in the Gene Bank.

For further work, a decision was made to use a portion of the small ribosome subunit - 18S rRNA, since it is the most commonly used marker for taxonomic research, and a lot of information is available about it.

It is known that polymerase chain reactions (PCR) are influenced by such parameters as concentration of primers, temperature of annealing, temperature of denaturation, and the number of amplification cycles.

Address for correspondence: Juliya Golubtsova, The State Educational Institution of Higher Education, “The Kemerovo Technological Institute (University) of Food Industry,” 650056, Kemerovo, Stroiteley Boulevard, 47, Russia

Received: 08-06-2017
Revised: 28-09-2017
Accepted: 11-11-2017
METHODS

Table 1 presents the number of NCBI sequences of the studied species of fruit-and-berry raw materials.

All primers were developed with the use of the PrimerQuest application (http://eu.idtdna.com/Primerquest/Home/Index). To simplify the further work, the installation settings of the application were made so that primers are created with the same annealing temperature, as in 18.

However, it was also necessary to identify the optimal parameters of amplification to be used in the future. Since we already know the temperature of primers annealing (62°C), the question remains about the number of cycles and the time of PCR elongation.

The size of amplicons obtained with the primers developed by us is in the range between 230 and 300 nucleotides. Based on the above, the recommended elongation time during PCR is 30 s.

DNA purification was performed with a commercially available set of reactants “Sorb-GMO” from ZAO “Syntol.”

DISCUSSION AND RESULTS

Phylogenetic analysis allows identifying interspecies relationships within the same genus of plants. Figures 1-7 show phylogenetic trees made on the basis of nucleotide sequences of rDNA 18S of genera Rubus, Fragaria, Ribes, Rósa, Prunus, Músa, and Actinidia used in our work.

Phylogenetic analysis of the nucleotide sequences of various types of raspberry shows that there are two clusters with good phylogenetic support, one type being significantly remote - Rubus odoratus (KM037685) [Figure 1].

In genus Fragaria, one large cluster is identified that incorporates the number of analyzed species, and the species of Fragaria linumae is separately remote (163512 AF and AF 163481). In genus Ribes, two large clusters are formed, which are divided into smaller clades.

In genera Prunus and Rosa, two clusters are also formed, but remote species is clearly distinguished [Figures 4 and 5].

<table>
<thead>
<tr>
<th>Genus that the studied fruits and berries belong to</th>
<th>The studied gene</th>
<th>The number of NCBI sequences of nucleotide sequences of studied species of the fruit-and-berry raw materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rubus</td>
<td>18SrRNA</td>
<td>KT634247; KM037686; KM037685; KM037677; KM037673; KM037672; KM037670; KM037669; KM037665; KM037662; KM037661; KM037411</td>
</tr>
<tr>
<td>Fragaria</td>
<td></td>
<td>GQ476745; AF163481; AF163499; AF163486; AF163494; AF163521; AF163520; AF163519; AF163518; AF163517; AF163516; AF163513; AF163507</td>
</tr>
<tr>
<td>Ribes</td>
<td></td>
<td>AY138019; AY138010; AY138005; AY137993; AY137980; AY137992; AY137977; AY138015; AY138020; AY138028; AY138030; AY138032; AY138033; AY138027; AY138026; AY138024; AY138023; AY138022; AY138021; AY138011; AY137989; AY137976; AY138010</td>
</tr>
<tr>
<td>Rósa</td>
<td></td>
<td>U90801; DQ242529; DQ242528; DQ242526; DQ242523; KP093154; KP093153; HM593928; HM593927; HM593926; HM593925; HM593924; HM593911; FM164424</td>
</tr>
<tr>
<td>Prunus</td>
<td></td>
<td>HQ332167; AF318729; KT887519; AF318717; AF318738; AF318721; AF318724; JQ926626</td>
</tr>
<tr>
<td>Músa</td>
<td></td>
<td>KT696458; KT257613; FJ428097; KU215117; FJ626378; FJ428069; FJ428093; FJ428080; FJ428081; FJ428086; KT257620; KT257621; KT257625; KU512933; KU512934; KU512938; KU512942; KT257603</td>
</tr>
</tbody>
</table>
so genus *Prunus* has closely grouped species *Prunus avium* and *Prunus cerasus* in the same clade. In genera *Músa* and *Actinidia*, two clusters are identified in each, one of which being more numerous. In genus *Actinidia*, a clade is separately identified with high affinity, which includes 2 species - *Aciotis rubricaulis* (KR8195112) and *Fusinus rudis* (KR819512) [Figure 7].
Phylogenetic analysis based on nucleotide sequences rRNA 18S of the studied fruit-and-berry raw materials shows kinship of fruit plants species within the same genus. For example, genus *Prunus* includes a variety of fruit-and-berry raw materials - cherry, plum, peach, apricot, and bird cherry; therefore, this fact should be considered in experimental studies and in practical work for identifying species of raw materials. On the one hand, the developed primers based on the chosen nucleotide sequences may be used for identifying all species within the genera, whereas on the other hand, one should remember that in case of mutual presence of fruit-and-berry raw materials that belong to the same genus they cannot be identified.

To select the optimal number of cycles of amplification, an experiment was made according to the scheme as summarized in Table 2.

Analysis has shown that the optimal parameters of amplification are the values of the II variant [Table 2]. The limiting factor in working with these primers is the number of reaction cycles. Changing the time of elongation does not result in any changes, changing the temperature of annealing is not recommended: At low temperatures, the reaction will result in a variety of non-specific amplification products, while in case of increasing the temperature, the required fragments will not be amplified.

After PCR with all primers and types of raw materials, the obtained products were visualized with the use of electrophoresis in 1% agarose gel. Analysis showed that the reaction had been successful in all studied samples of fruit-and-berry raw materials [Figure 8].

For additional verification of specificity of primers, fragments read by each pair of the developed primers were sequenced. For this purpose, eight PCR reactions were made, one with each pair of primers that corresponded to one type of raw material. The obtained PCR products were reprecipitated with ethanol in the presence of ammonium acetate, then dried, after which they were sequenced according to the Sanger method with the use of device ABI Prism 3500×L. The data at the output of the sequenator - chromatograms [Figure 9] - had been converted into nucleotide sequences, after which they were compared to the NCBI sequences available in GeneBank using the BLAST algorithm [Figure 9].

All sequences coincided with the sequences deposited in the GeneBank for their raw material [Figures 10-17]. Thus, specificity of the developed primers with the use of the BLAST algorithm has been additionally verified. It has been found that all sequeneed sequences coincided with the sequences deposited in the GeneBank for their raw material.

### Table 2: The scheme of the study for determining the optimal parameters of amplification

<table>
<thead>
<tr>
<th>Names of parameters</th>
<th>Variants of the experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td>Amount of primers, µl</td>
<td>0.5</td>
</tr>
<tr>
<td>Mode of amplification</td>
<td>95°C, 60 s</td>
</tr>
<tr>
<td></td>
<td>62°C, 30 s</td>
</tr>
<tr>
<td></td>
<td>72°C, 30 s</td>
</tr>
<tr>
<td></td>
<td>25 cycles</td>
</tr>
</tbody>
</table>

Figure 7: The phylogenetic tree made on the basis of nucleotide sequences of kiwi rRNA 18S used in the work. The numbers of the sequences deposited in Gene Bank are shown (method: ML, bootstrap 10000)

Figure 8: An electrophoretogram with the results of PCR reaction. 1 - strawberry, 2 gooseberry, 3 - cherry, 4 - raspberry, 5 - banana, 6 - briar, 7 - kiwi, 8 - negative test, and 9 - DNA marker (50–1,000 bps). Each type of raw material corresponds to one of the previously developed pairs of primers

Figure 9: Graphical output of ABI Prism sequenator - chromatogram
CONCLUSION

Using various software packages and databases of NCBI GeneBank, for each of the studied objects of fruit-and-berry raw materials, we have managed to find a suitable DNA portion at the level of generic differentiation for further development of universal primers on their basis. It is the rDNA 18S portion.

All found sequences have both the conservative part for planting a pair of primers, and the variable one for reliable identification of species, or performing phylogenetic analysis.

Algorithmic analysis of sequences has been performed, and optimal locations for primers have been searched for with the use of the PrimerQuest application with indication of the maximum size of the amplicon, not exceeding 300 bps, read by a couple of primers in the settings.

Among the variants of primers proposed by the application, optimal pairs have been chosen for each type of fruit-and-berry raw materials, with regard to such parameters as length of the primer, annealing temperature, and amplicon location.

The optimal parameters of the amplification process have been defined: The amount of primers is 0.5 µl, amplification mode: 95°C, 60 s; 62°C, 45 s; 72°C,
30 s; 30 cycles. The chosen mode of amplification was confirmed by the results of PCR with all samples of fruit-and-berry raw materials visualized as an electrophoretogram in 1% agarose gel.

An additional check of primers specificity has been performed with the use of the BLAST algorithm. It has been determined that all sequenced fragments that can be read by each of pairs of developed primers coincided with those deposited in the General Bank by sequences of the studied raw material.

**REFERENCES**

3. Porteous LA, Armstrong JL. A simple mini-method to
12. Subacius SM. Dating the emergence of the Deuterostomes during the proterozoic eon based on 5S rRNA. An Acad Bras Ciênc 1998;70:491-500.

Source of Support: Nil. Conflict of Interest: None declared.