Pharmaceutical processing and standardization of modified dosage form of Lodhradi Kashaya as spray dried powder

Varun Kumar Singh, K. R. C. Reddy

Department of Rasa Shastra, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India

Abstract

Introduction: Lodhradi Kashaya is a classical formulation mentioned in Vaidya Chintamani under Kaphaj Prameha and in Basavarajiyam under Prameha Prakarana. The therapeutic efficacy of the Lodhradi Kashaya was described as “Madhumehajeet,” i.e., win over diabetes mellitus. Lodhradi Kashaya was selected for research study, and formulation was modified as instant dissolving powder because classical kwath (decoction) had shorter shelf life, and it is difficult to prepare fresh kwath each time while administration. Aim: Pharmaceutical preparation and standardization of Lodhradi Kashaya spray dried powder. Materials and Methods: Lodhradi Kashaya spray dried powder was prepared by complete aqueous extraction of ingredients followed by drying with spray drier. Physicochemical testing, and standardization of finished formulation was done by following standard protocol. Results: Finished spray dried Kashaya powder was evaluated for different standardization parameter which showed limit of detection (5.86%), pH of 1% w/v solution (3.55) and 5% w/v solution (3.42), total ash value (10.68%), acid insoluble ash (0.47%), extractive value in water (84.95%), and methanol and ethyl acetate (51.21% and 0.86%, respectively). Spray dried powder was fine (pass through 80# mesh) in nature. Lodhradi Kashaya spray dried extract requires time span to get soluble as 15 s (30°C), 11 s (40°C), and 8 s (60°C) on gentle stirring. It was also evaluated for heavy metal, and microbial load that was found are within limit. Conclusion: Lodhradi Kashaya decoction powder dosage form is very convenient to prepare Kashaya dosage form while administration whenever and whereever it is required in busy life schedule. This study and approach will be helpful to revitalize the Kashaya dosage form as it has better exposure and probably better efficacy in the human body.

Key words: Kashaya, instant dissolving Kashaya extract, Madhumeha

INTRODUCTION

Approximately, 347 million people are diabetic worldwide, among which 90% are suffering from Type 2 diabetes mellitus.[1] India’s embrace of the worst of both eastern and western ways is sending lifestyle illnesses such as obesity and diabetes skyrocketing. In 2011, India had 62.4 million people with Type 2 diabetes, compared with 50.8 million the previous year, according to the International Diabetes Federation and the Madras Diabetes Research Foundation.[2] Ayurvedic medicines are attracting global population to treat and prevent various diseases and disease complications by their holistic approach to heal since antiquity. Ayurvedic literature having various references for the treatments of Madhumeha (diabetes), there are many formulations and lifestyle procedures were mentioned for its regulation and treatment. In Vaidya Chintamani many decoction formulations were mentioned for treatment of Madhumeha, Lodhradi Kashaya is one of them mentioned for the treatment of Kaphaj prameha.[3] Basavarajiyam also mentioned one formulation containing the decoction of Lodhra, Haritaki, Musta and Katphala for the management of Madhumeha and effect of this formulation is mentioned as “Madhumehajeet.”[4] This formulation is containing four ingredients Lodhra (stem bark), Haritaki

Address for correspondence:
K. R. C. Reddy, Department of Rasa Shastra, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
E-mail: drkcreddybhu@yahoo.co.in

Received: 02-05-2015
Revised: 10-06-2015
Accepted: 28-09-2015
(fruit pulp), Musta (rhizome) and Katphala (stem bark) [Table 1]. Since in classical text suggested dosage form was kwath (decoction) for prameha but in present busy life schedule it became difficult to prepare fresh kwath at each administration. So in present study, an approach was made to prepare instant Kashaya powder with spray drier technology with the kwath prepared by classical methods. Shelf life of the kwath is 24 h as classical text. Hence by preparing instant dissolving Kashaya extract (dried powder dosage form), shelf life also increased so that one may take kwath just by dissolving the suitable quantity of Kashaya powder in warm water. Therefore in the present study, step is made to develop spray dried Lodhradi Kashaya extract which will facilitate quick dissolving in gentle warm water and further helps inconvenient and easy for administration in busy life whenever and wherever it is required.

MATERIALS AND METHODS

Procurement of Drugs

Raw drug ingredients were collected from “raw drug supplier” Sikandrabad, Noida India. The raw drugs sample were collected in jute bags and labeled with name, place and date of collection. Raw drugs were authenticated by an eminent scholar of Department of Dravyaguna, Institute of Medical Sciences, Banaras Hindu University, Varanasi and further screened by the quality control unit at Sanath Product Ltd. and best precaution were taken to purchase the drugs. Physical impurities like soils, stones, and foreign material were manually removed from the raw material.

Preparation of Kwath Churna

Each ingredient of the formulation is taken in 35 kg of each and made into kwath churna by milling of raw drugs. The raw drugs first inspected for foreign matter then milled to make them into coarse powder form.

Aqueous Extraction (Kwath Preparation)

The concept of kwath (decoction) preparation was modified with the concept of complete aqueous extraction. These kwath churna (140 kg) are soaked 6 h in distilled water on 1st day in stainless steel container having 500 L water and 700 L water were added to the kwath churna when heating started on mild heat over steam jacketed pot [Table 2]. Heating was done for complete aqueous extraction in three successive steps using same raw material. This complete extraction was done in three batches with same kwath churna to get complete extract. The decoction was observed for total solid content (TS) and collected in vessel then refiltered to ensure complete removing of sediments and larger particles. The first batch extraction gives 3 TS filtrate, the second batch gives 2 TS filtrate, whereas the third batch gives 0.5 TS filtrate indicating complete aqueous extraction [Table 2]. All the kwath was stored in stainless steel pot.

Optimization of Dilute Aqueous Kwath for Spray Drying

Kwath from all the batches were taken in steel pot collectively and reheated on vertical multiple effect evaporator under controlled condition (temperature VS 1-75°C, temperature VS 2-65°C, vacuum 540, heater - 76°C, steam pressure - 8 kg, cooling tower temperature - 30°C) to concentrate the kwath. Evaporation done until kwath turns into thicker (36 TS) concentrate [Table 3]. Now, the concentrated kwath was ready for spray drying thus it again collected in the stainless steel.

Preparation of Spray Dried Powder

Kwath (TS - 36%, approximately 100 L) was subjected to drying by spray drier method. Spray drier is the technology where liquid were dried by aspirating it in the hot air under controlled environment (inlet temperature 182°C, outlet temperature 108°C, feed pressure 50 kg), where particle were dried and converted into dried fine powder [Table 3]. This fine powder was weighted and stored in air tight sealed plastic packet.

Standardization

Standardization of Lodhradi Kashaya powder were done immediately after preparation, with analytical grade chemical following the standard procedure mention in The Ayurvedic Pharmacopoeia of India and testing protocol for Ayurveda,

<table>
<thead>
<tr>
<th>Table 1: Ingredients of Lodhradi Kashaya</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant</td>
</tr>
<tr>
<td>Lodhra</td>
</tr>
<tr>
<td>Hareetaki</td>
</tr>
<tr>
<td>Musta</td>
</tr>
<tr>
<td>Katphala</td>
</tr>
</tbody>
</table>

S. racemosa: Symplocos racemosa, T. chebula: Terminalia chebula, C. rotundus: Cyperus rotundus, M. esculenta: Myrica esculenta

<table>
<thead>
<tr>
<th>Table 2: Complete aqueous extraction of raw materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processes</td>
</tr>
<tr>
<td>First</td>
</tr>
<tr>
<td>Second</td>
</tr>
<tr>
<td>Third</td>
</tr>
</tbody>
</table>

TS: Total solid
Siddha and Unani drugs. The sample was evaluated for different organoleptic characteristics, as well as for standardization parameters like determination of ash value (total ash and acid insoluble ash), determination of extractive values in water, methanol, ethyl acetate, solubility in water at a different temperature and its fineness.

Moisture Content

Moisture analysis has been done by using Shimadzu moisture analyzer MOC-120H at room temperature.

Determination of pH

Sample was dissolve in water to prepare 1% and 5% strength solution, and then pH was measured by digital pH meter using glass membrane electrode at room temperature.

Heavy Metal Analysis

Heavy metal is analyzed by atomic absorption spectroscopy. Sample was dissolved in 50% HNO₃ for the digestion that was further diluted with distilled water.

Microbial Load

The formulation was subjected for the microbial contamination. Sample was collected immediately after the processing of the formulation (After 48 hr of the spray drying).

RESULTS

Organoleptic characteristic of the drug shows that formulation is dark brown, smooth, astringent, and bitter and possesses specific aromatic odor. Physicochemical study of the Lodhradi Kashaya was done, and the results are summarized in Table 5. The formulation was evaluated for the time period required to get dissolve in water at different temperature on gentle stirring, and results are summarized in Table 6. The Lodhradi Kashaya was evaluated for their microbial load and heavy metal (As, Pb, Hg, Cd) and the results are summarized in Tables 7 and 8 respectively.

DISCUSSION

The approach of presented research work is to make kwath (Kashaya) available to the common people with least hurdle of preparation and for this purpose Kashaya dosage form was modified to water dissolving powder dosage form, keeping the focus that final administration will be in the Kashaya form (dissolving the appropriate quantity of dissolving dosage form in gentle warm water). Since Ayurvedic pharmacological action is due to the rasa, guna,
Singh and Reddy: Pharmaceutical processing and standardization of Lodhradi Kashaya powder

Table 7: Microbial load of Lodhradi Kashaya spray dried extract

<table>
<thead>
<tr>
<th>Testing parameter</th>
<th>Observation</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total bacterial count</td>
<td>60 CFU/g</td>
<td>1×10^4 CFU/g</td>
</tr>
<tr>
<td>Total fungal count</td>
<td>27 CFU/g</td>
<td>1×10^4 CFU/g</td>
</tr>
<tr>
<td>E. coli</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>Salmonella sp.</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>S. aureus</td>
<td>Absent</td>
<td>Absent</td>
</tr>
</tbody>
</table>

E. coli: Escherichia coli, P. aeruginosa: Pseudomonas aeruginosa, S. aureus: Staphylococcus aureus

Table 8: Estimation of heavy metal in Lodhradi Kashaya

<table>
<thead>
<tr>
<th>Element</th>
<th>Wavelength</th>
<th>Concentration (ppm)</th>
<th>Limit (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>228.802</td>
<td>0.020</td>
<td>0.3</td>
</tr>
<tr>
<td>Lead</td>
<td>220.353</td>
<td>0.416</td>
<td>10 ppm</td>
</tr>
<tr>
<td>Mercury</td>
<td>253.652</td>
<td>Not detected</td>
<td>1 ppm</td>
</tr>
<tr>
<td>Arsenic</td>
<td>193.696</td>
<td>Not detected</td>
<td>3 ppm</td>
</tr>
</tbody>
</table>

veerya, vipaka, and prabhava so approach was made such that dosage form modification leads to administration as Kashaya as a final dosage form. Rasa is perceived especially through tongue and buccal cavity and senses from mouth, nose and eyes directly goes to brain and its action get started. This dried powder dosage form ensures enhanced shelf life than Kashaya and reproducibility. For this purpose, complete aqueous extraction was done to get maximum yield and complete phytoconstituent in the kwath. This concept was adopted to enhance phytoconstituent extraction. As more yield value may tends to the cost effectiveness of final drug. Drying was done by spray drier (Inlet temperature 182°C, outlet temperature 108°C, feed pressure 50 kg) to ensure very fine powder. Spray drier is the technology that convert liquid kwath into dried powder so this technology was adopted here as it enhance flow properties and ensure better handling, as well as dose uniformity. The dried sample was evaluated for their quality following standard parameter mentioned in active pharmaceutical ingredients and other reference standards. Organoleptic characteristic of the drug shows that formulation is dark brown, smooth, astrigent, and bitter and possesses specific aromatic odor [Table 4]. Aromatic odor may be due to the mixed constituents of four plants. Bitter and astrigent test is due to the tikta, katu, and Kashaya rasa present in ingredients. [12] Analytical evaluation of the Lodhradi Kashaya powder shows that moisture content of the Lodhradi Kashaya are 5.86% [Table 5]. Moisture content denote the presence of water content in the sample which was responsible for stability period and intactness of the products. [13] The presence of excess moisture is conducive to the promotion of mold and bacterial growth, and subsequently to deterioration and spoilage of the drug. [14] Ash value is the common method to know the adulteration of the inorganic materials, and it has greater importance in the quality control and standardization. Higher the inorganic material higher will be the ash value. [15] Total ash value of the Lodhradi Kashaya was 10.68% which denotes that there are some inorganic material present in the product that may be due to plant constituent and physical impurities [Table 5]. Acid insoluble ash value was 0.47% which represent the siliceous content in the sample. [14] Extractive value represents the quantity of the phytoconstituent and materials that are soluble in the respective solvent. It is also related to the availability of drugs in a different medium in body through different solvent carriers. Any change in the extractive value refers the change in the constituents thus it help in the standardization and reproducibility of the drugs. Methanol soluble, water soluble, and ether soluble extractive value were evaluated to know the percentage of product soluble in the respective solvent and was found 51.21%, 84.95%, and 0.86% [Table 5] that reflect that Lodhradi Kashaya dissolving powder have greater solubility on water in comparison to alcohol and ether, which depicts its more bioavailability in water medium. [15] Water soluble extractive value (10.52%) is due to the presence of sugars, acids, polar constituents, glycosides of steroid, alkaloids, and coumarins. [16] Alcohol soluble extractive value shows the presence of fewer amounts of polar substances like phenols, tannins, glycosides and flavonoids. [16] pH of 1% and 5% solution of the Lodhradi Kashaya are found 3.55 and 3.42, respectively, which denotes that solution of the formulation is acidic in nature [Table 5]. All the powder drug was passed through 80# mesh size that refers that powder is fine in nature and having good flow property. [9] Solubility study was done to know the effect of temperature and quantity of the drugs over time required for dissolving the formulation in water. It was observed that more the temperature, better the dissolving while amount of the drug also affects the time required for dissolving. Heavy metal estimation were done for cadmium, lead, mercury and arsenic, and the result shows that lead and cadmium were found to be 0.416 and 0.020 ppm respectively [Table 8] while other heavy metals were not detected, and the value found here complies within limit. [17] The microbial load was calculated based on Agar media was found within limit [Table 7] [17] and it reflect that proper hygiene norms followed during the preparation of formulation and packing. [15] It shows that finished product is safe for use, and all the data are complies within the prescribed limit while physicochemical data support that product is safe and stable.

CONCLUSION

Lodhradi Kashaya mentioned in the Vaidya Chintamani and Basavrajiyam clearly indicate its therapeutic efficacy in diabetes mellitus, especially in Basavrajiyam it was denoted as Madhumehajeet (win over diabetes). In fast living style, it is hectic to prepare Kashaya (decoction) every time for administration. Since Kashaya also have shorter shelf life so here an approach is made to modify the dosage form to

International Journal of Green Pharmacy • Oct-Dec 2015 • 9 (4) | 255
ensure better shelf life and to make it available as *Kashaya* by dissolving in a suitable quantity of water whenever and where ever it is required. Analytical standardization was done to ensure quality in medicine and reproducibility at the same time.

ACKNOWLEDGMENT

We are very thankful to the administration and working staff of Sanat Pharmaceutical Ltd. for their support in preparation of medicine and analytical work. We are thankful to DST, Ministry of Science and Technology for their INSPIRE Fellowship award and financial support.

REFERENCES

Source of Support: DST-INSPIRE Fellowship and Sanath Product Ltd., Sikanderabad, Noida. **Conflict of Interest:** None declared.