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Abstract

Stresses are the prime factor for limiting agricultural productivity. Protracted stress conditions are accountable 
for the generation of reactive oxygen species (ROS) in various cell compartments. ROS attacks biomolecules and 
interrupts the regular mechanism of the cell that eventually prompts to cell death. Crops requisite to acclimatize 
adverse external stress generated by ecological conditions with their native biological mechanisms defeated which 
their growths as well as productivity endure. Microbes, the supreme natural occupants of diverse environments, 
have developed intricate physiological and metabolic mechanism to manage with potentially toxic oxygen species 
that are generated by environmental stresses. Subsequently, the interaction of microbial population with plants 
is an essential for the ecosystem, and microbes are the natural partners that accommodate in plants to combat 
with antagonistic environment. Plant microbiome involves intricate mechanisms inside the plant cell. Molecular, 
physiological as well as biochemical studies support to understand the intricate and integrated cellular processes 
of plant–microbe interactions. During the incessant stress by increasing environmental variations, it is becoming 
more essential to characterize and decipher plant–microbe association in relation to defense against environmental 
challenges.
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INTRODUCTION

Plants are affected by various stress 
conditions, and among them, abiotic 
stress is the prime cause of limiting the 

crop production in worldwide.[1,2] The effect 
of abiotic factor on the plant depends on its 
quantity or intensity. The plant requires a certain 
quantity of abiotic environmental factor for 
their optimal growth. Any alteration from such 
optimal environmental conditions, which is 
deficit in the chemical or physical environment, 
is considered as abiotic stress and critically 
impacts on plant growth, development, and 
productivity.[1] They are chronic features of 
nearly all the world’s climatic regions since 
several critical environmental risks and these 
threats are mobilized by global climate change 
and population growth.[3-5]

Anomaly environmental conditions generate 
abiotic stresses that are the primary restrictive 
factors for limiting crop production.[6,7] Abiotic 
stresses comprise of heat, cold, drought, 
alkaline conditions and salinity, waterlogging, 

light intensity, and nutrient deficiency.[2,8-12] Drought has 
affected 64% of the worldwide land area, salinity 6%, anoxia 
13%, soil alkalinity 15%, mineral starvation 9%, and cold 
57%.[13] Of the world’s 5.2 billion ha of dryland agriculture, 
3.6 billion ha is influenced by the issues of soil erosion, 
degradation, and salt stress.[14]

Plants adapt with the rapid alteration and affliction of 
ecological conditions as a result of their natural metabolic 
mechanisms.[15] Deviations in the external environment 
conditions could put the plant metabolism out of homeostasis[16] 
and make the need for the plant to harbor some metabolic and 
genetic mechanisms in the cell.[17,18] Plants retain a variety 
of defense mechanism to combat abiotic stress conditions.[19] 
These mechanisms involve in the metabolic reprogramming 
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in cellular system to enable biophysicochemical processes 
of the external conditions.[20-25] Several time, plants reduced 
the burden of abiotic stresses with the help of the inhabitant 
microbiome.[26,27]

Microbes are the integral part of ecological system and 
important for crop production. Microorganisms are important 
inhabitants of seeds also and proliferate as germinate in 
the soils to form mutual associations at the surface or 
endophytic associations inside the roots, stems, or leaves. 
Plant microbiome gives principal support to the plants in 
securing supplements, opposing against infections, and 
enduring abiotic stresses.[26] Microbial inherent metabolic 
and hereditary abilities make them reasonable organisms 
to cope up with environmental challenges.[28,29] Their 
communications with the plants incited a few fundamental 
responses that improved the metabolic mechanism of the 
plants for defense against abiotic stress conditions as shown 
in Figure 1.[30] Several studies reported the imperative 
characteristics of the microbial communications with plants 
that propose mechanisms based on plant-microorganism 
associations that accentuated the biochemical, molecular, and 
cellular mechanisms of plant defense against stresses.[31,32]

Studies on plant microbiome at molecular, physiological, and 
biochemical levels observed that plant–microbes associations 
communicate plant responses against stress conditions.[33] 

Technological developments also facilitated understanding of 
gene editing systems, RNAi-mediated gene silencing, mutant 
technology, proteomic analysis, and metabolite profiling 
to reveal voluminous molecular information that helped in 
improving our understanding of microbe-interactions. In this 
study, we summarize the impact of environmental stresses 
on plants and defense responses induce in plants in terms of 
biochemical and molecular mechanisms.

HOW ENVIRONMENTAL STRESS EFFECT 
PLANTS?

Diminishing of Physiological Process of Plant

Plants required abiotic environment for their physiological 
and developmental mechanism. Unfavorable abiotic 
environment is intricate set of stress conditions that limit 
plant growth and development. Plants can detect and respond 
to stresses in various ways that support their nourishment.[34-

36] Plants not only recognize the previous exposure to stresses 
but also the mechanisms involved in defense, and again when 
the same stress exposes, they can adapted consequently.
[37] The most obvious effect of unfavourable conditions 
initially appear at the cellular levels after that, physiological 
symptoms are observable. Water stress antagonistically 
influences physiological status of plants including the 
photosystem.[38] Prolong exposure of water stress reduces leaf 
size, seed number, size, and viability, declines water potential 

and stomatal opening, reduces root growth, delays flowering, 
and restrains plant growth and productivity.[39,40] Hence, 
plants have sagaciously evolved distinctive mechanisms to 
limit utilization of optimum water assets and regulate their 
growth till they expose with adverse conditions.[41] Exposure 
of adverse light intensities reduces the physiological process 
and unfavorably impacts on plant development. Abundance 
light prompts photooxidation that enhances the fabrication 
of reactive oxygen species (ROS) to influence enzymes and 
other biomolecules.[42-44]

Biochemical Changes During Environmental 
Stress

Several abiotic factors affect plant development and limit crop 
production, different levels of acidic conditions unfavorably 
effect on soil nutrients that cause a nutrient deficiency in 
plant and disrupt normal physiological ability for plant 
growth and development.[45-47] Prolonged exposure to salinity 
stress leads to toxicity within the cell along with interruption 
of osmotic balance. Effect of ionic followed with osmotic 
stresses leads to altered plant growth and development.[48] 

Forbearance to salinity stress needed to regulate ionic and 
osmotic balance in the cells. For resistance toward salinity, 
plants protect delicate plant tissues from high salinity area 
or by emanating ions from roots or keeping ions away from 
the cytoplasm.[49] During freezing conditions, some plants 
developed a mechanism to cope up with cold temperatures 
by elevating their defense response by the process of cold 
acclimation.[50] After sensing the stress, plants show a quick 
and compelling reaction to initiate an intricate stress-specific 
signaling by synthesizing plant hormone and accumulation of 
phenolic acids and flavonoids.[51-57]

Generation of ROS

Abiotic stresses are primary cause for the generation of ROS. 
The generation and elimination of ROS are at balance under 
normal conditions, whereas under environmental stress, it 
disturbs this equilibrium by increasing the production of ROS 
as shown in Figure 1. ROS is very toxic for the organism as 
they adversely impact on the structure and function of the 
biomolecules. The ROS produced in plants in chloroplasts, 
mitochondria, and peroxisomes. Oxygen radicals and 
hydrogen peroxide are produced in mitochondria due to the 
overreduction of the electron transport chain. Chloroplasts are 
the main source of the production of O2 and H2O2,[58] due to 
higher oxygen pressure and reduced molecular oxygen than in 
other organelles in the electron transport chain within PSI.[59] 

These superoxides are converted to hydrogen peroxide either 
spontaneously or by the action of the enzyme superoxide 
dismutase (SOD). Hydrogen peroxide is also responsible for 
the production of hydroxyl radicals. It has been reported that 
peroxisomes are a major producer of H2O2 and responsible 
for the production of superoxides (O2−). In peroxisomes, 
the production of O2− occurs in the peroxisomal matrix and 
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the peroxisomal membrane. In the peroxisomal matrix, the 
oxidation of xanthine and hypoxanthine to uric acid in the 
presence of the enzyme xanthine oxidase generates O2− 
radicals.[60] They damage the biomolecules such as proteins, 
lipids, carbohydrates, and DNA, which leads to cell death.[16]

PHYSIOLOGICAL AND MOLECULAR 
DEFENSE MECHANISM OF PLANTS 

AGAINST ENVIRONMENTAL STRESS

Plants smartly sense and defense against the changing 
environmental conditions. Their approaches and responses 
to abiotic stresses involve an interactive metabolic cross 
talk within various biosynthetic pathways. Root architecture 
is sensitive in sensing abiotic stress signals and responding 
accordingly in the soils.[61] It is an intricate mechanism 
that involves changes at genetic, cellular, metabolic, and 
physiological levels.[62] The prime impact of abiotic stresses is 
generated water-deficient conditions within cells followed by 
the development of biochemical, molecular, and phenotypic 
action against stresses.[38,63] Plants experienced many stresses 
in the environment so as the complexity of their responses 
to multiple stresses in comparison to individual stress. The 
complexity occurs due to activating specific gene expression 
along with metabolic programming in cells against to 
individual stresses encountered. Tolerance to stresses is 
a vital phenomenon including different stages of plants 
development. Abiotic stress responses may reduce or increase 
the susceptibility of plants toward biotic stresses caused due 
to pests or pathogens.[64] This becomes more important in 
account to agricultural crops because, in various agricultural 
systems, most crops grow in unfavorable environmental 
conditions that are restricted to the genetic potential of the 
plants for growth and development.[1]

Plant Responses Against Drought Stress

Plants are sensitive to water stress. During drought 
conditions, peroxidation induced that leads to disturb 
antioxidant metabolism.[65,66] Rehydrating further reduced 
the peroxidation level and rejuvenates the growth and 
development of newly growing plant parts and stomatal 
opening. In roots, both drought and waterlogging lead 
to high accumulation of ROS.[65] Drought responses vary 
from different plant species in account to the activity of 
SOD enzyme that performed a critical role in antioxidant 
metabolism.[66] In bluegrass, SOD activity was not influenced 
by drought stress, and gene expression of FeSOD and Cu/
ZnSOD is downregulated. In Alfalfa, FeSOD and CU/ZnSOD 
are upregulated by drought stress, suggesting that defense 
responses differ from species and tissues.[16,67] An enhanced 
level of salts in the soil is harmful to the plant cells, and 
different cells in a tissue respond differently to the stresses 
caused due to salinity.[68] Stressed cells are detrimental to their 
location, whether at the root surface or within tissues, and 

altered their gene expression during the stress condition.[69] 

The osmotic potential of the soil declined due to the enhanced 
level of salt, which leads to ion toxicity in the plants. This 
situation can adversely affect on the physiology of the 
plants by suppressing seed germination and growth of the 
seedlings and early senescence of the plants and finally cause 
death.[70,71] Salinity stress declines the amino acids levels such 
as cysteine, arginine, and methionine. Proline synthesis in the 
cells is a prominent alleviated approach from salinity stress.[72] 
Similarly, production of nitric oxide, activation of antioxidant 
enzymes, modulation of hormones, and synthesis of glycine 
betaine are some other changes within plants during salinity 
stress.[73] This principally occurs due to water deficiency and 
deterioration in the nutrient availability caused due to high 
salinity that disturbs plant tissues and adversely affects crop 
productivity.

Plant Responses Against Heat Stress

Heat stress is a severe agricultural problem as it adversely 
impacts on functional, structural, biochemical, and genetic 
modifications in plants that affect crop production. 
A complete study on plant defense mechanisms against heat 
stress could help in the improvement of better approaches 
for crop productivity.[74] High temperature negatively impacts 
on plants during different growth stages, and it reduces seed 
germination, disturbs photosynthetic activities, and declines 
in membrane permeability.[66] Plants respond against heat 
stress by modulating the level of phytohormones, metabolites, 
increasing the expression of heat shock and related proteins, 
and accumulation of ROS.[75] Defense mechanism in 
plants against heat stress not only includes maintenance 
of membrane stability and activation of mitogen-activated 
protein kinase and calcium-dependent protein kinase but also 
involves scavenging of ROS,[76] accumulation of antioxidant 
metabolites, chaperone signaling, and transcriptional 
modulation.[74]

Plant Responses Against Multiple Stress 
Conditions

Plants are more effectively response against multiple stress 
conditions rather than specific stress alone. Multiple stresses 
diminish the harmful destructive impact of each other 
subsequently, enhancing the probability of healthier survival 
of plants. It has been reported that the consolidated effect 
of ozone and drought in plants brought about improved 
tolerance.[77] The cumulative effect was responsible to 
reduced stomatal conductance. Increased the level of ascorbic 
acid and glutathione adequately scavenges ROS. In addition, 
it is a troublesome errand for plant to fight toward particular 
stress, especially when it is developing in the field from 
the effect of various stresses. Multiple stresses arise at the 
same time in field conditions and thus occur simultaneously 
in field conditions and so mitigating plant mechanisms to 
combat with hastily fluctuating environmental conditions.[78]
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Role of Plant Hormones in Responses to Stress 
Conditions

Plant hormones are not only important for the plant growth 
and development but also involve in defense mechanism 
against environmental stresses.[79] Plants approach their 
physiological resources for adjusting in the adverse 
environmental conditions that make them exceptionally 
susceptible to biotic stresses.[80,81] Abscisic acid-mediated 
abiotic stress response pathways are most important followed 
by other phytohormone-dependent defense pathways, 
namely, ethylene (ET), jasmonic acid, and salicylic acid that 
provoke plants for environmental stress response. It has been 
observed that jasmonic acid has active defense responses 
against necrotrophs.[82]

PLANT MICROBIOME: ROLE IN STRESS 
AND ITS MECHANISM

The plant–microbial interactions are imperative for the 
adjustment and survival of both the accomplices in any 
environmental conditions. The function of microbes to 
increase abiotic stresses in plants has enticing attention 
by investigators in recent decades.[83-85] Microbes with 
their potential intrinsic metabolic and genetic capabilities, 
contribute to alleviate abiotic stresses in the plants.[86] The 
function of various rhizomicrobes belongs to the genera 
of Pseudomonas, Azotobacter, Rhizobium, Azospirillum, 
Pantoea, Bacillus, Enterobacter, Bradyrhizobium, 
Burkholderia, Trichoderma, and Cyanobacteria in plant 
growth and combating different environmental challenges.[87-

92] It has been reported that Trichoderma harzianum responses 
against stress in rice by upregulating the stress-related 
genes, namely, dehydrin, malondialdehyde, and aquaporin 
genes including physiological parameters. Several microbes 
induce plant responses which altered the level of many 
defense proteins, antioxidant enzymes, polysaccharides, and 
phytohormones, for example, Rhizobacteria-induced drought 
endurance and resilience.[93] These approaches make plants 
able to cope up with environmental stress conditions.[94] 
Improved oil content in Brassica juncea affected with NaCl 
was testified by the treatment of T. harzianum that enhanced 
the uptake of vital nutrients, improved aggregation of 
osmolytes and antioxidants as well as reduced the uptake of 
NaCl.[35] Followed by such reports, Trichoderma synthesizes 
1-aminocyclopropane-1-carboxylate (ACC) deaminase to 
amend salinity stress.[95] Similarly, Pseudomonas sp. and 
Acinetobacter sp. increase the production of indole acidic 
acid (IAA) and ACC deaminase in oats and barley under 
salinity stress.[96] It has been reported that the Streptomyces 
sp. strain PGPA39 alleviated salinity stress and promoted 
growth in tomato plants.[97] Burkholderia phytofirmans strain 
PsJN combat drought stress in wheat,[98] maize,[99] and salinity 
stress in Arabidopsis thaliana.[100]

Physiological Mechanism of Phytomicrobiome 
Against Stress

Several studies have enhanced our understanding on 
physiological methods associated with roots, chemical 
molecules produced by roots, signaling between microbes and 
root, and possible defense mechanisms.[101-106] Researchers have 
given special attention to microbes associated with root in soil 
among other symbiotic associations between many plants and 
microorganisms. Mycorrhiza is eminent by fungal colonization 
inside or outside the cell that helps in nutrient assumption.[107] 

Rhizobacteria form root nodules of leguminous plants, involve 
in nitrogen fixation, and deliver it to the plants.[108] These 
affiliations have given data about mutualistic relationship 
since plants have created constitutive and inducible defense 
mechanism to keep away from destructive communications.

Cross Talks between Plants and Microbes during 
Stress Conditions

There are several cross talks between plants and microbes 
during their interaction using different signaling molecules. 
Various microbes are harmful to plants that limit growth 
and development. Plants have mechanism to recognize 
certain compounds released by microbes and enhance 
defense responses. The plant signaling hormones, namely, 
salicylic acid, jasmonic acid, and ET are used to activate 
defense mechanism during the interaction between plants 
and microbes in response to stress conditions.[109,110] Plants 
identify pathogens by detecting extracellular molecules 
that are called pathogen-associated molecular patterns 
(PAMPs) or microbe-associated molecular patterns, namely, 
Ef-TU proteins, bacterial flagellin, lipopolysaccharides, 
and peptidoglycans,[111] and/or intracellular effector proteins 
or tissue damage using pattern recognition receptor (PRR) 
proteins located on the cell surface or within the cell as shown 
in Figure 1.[111-113] The plant immune system comprises of four 
level. In level 1, PAMPs of microbes are recognized and bind 
to specific PRRs located on the cell surface that triggers the 
plant immune system and leads to enhanced immunity (PTI), 
which prevents colonization and proliferation.[31,111,114,115] In 
level 2, several pathogens induced effectors that enhance 
virulence. The effectors hinder with PTI and lead to effector-
triggered susceptibility. In level 3, nucleotide-binding leucine-
rich repeat receptor proteins recognize the effector, which 
activated the effector-triggered immunity (ETI) that leads to 
disease resistance. In level 4, natural selection has motivated 
pathogens to conquer ETI by emerging effectors promoting 
virulence until plants have developed new receptors.

Impact of Plant Growth Promoting Bacteria (PGPB) 
on Plants

PGPB are improving plant growth and tolerance against 
environmental stress. Plants are exposed to different abiotic 
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stress conditions, and phytohormones play a vital role in 
signaling such as abscisic acid, jasmonic acid, salicylic 
acid, and ET that react to stress defending plants from 
different environmental challenges as shown in Figure 1.[116] 
Further, studies reported that ACC deaminase activity of 
PGPB could regulate the stresses in plants.[117-119] The PGPB 
not only help in combating to abiotic stresses but also 
enhance crops productivity including rice, maize, barley, 
and soybean.[120-123] Improved root colonizing ability of 
Pseudomonas sp. laterally with its capability to synthesize 
exopolysaccharides prompts improved resistance in 
response to salt stress in rice during germination.[121] 
Similarly, it has been demonstrated that inoculation of 
Bacillus pumilus enhances rice development in response to 
heavy metal and salinity stresses.[61]

Phytohormones

Phytohormones play a key role in plants defense 
mechanism, and plants react and adapt to abiotic stresses 
by balancing the phytohormone levels. A few reports 
have revealed that PGPB fortify plant development by 
direct or indirect systems. In the direct mechanism, 
microbes accumulate phytohormones, for example, IAA, 
gibberellins, cytokinins, and ET that invigorate plant 
development as well as regulate the hormone level in plants 
that may likewise antagonism to phytopathogens as shown 
in Figure 1.[124-136] In indirect mechanism, the microbes 
actuate plant resistance by producing chemicals that can 
regulate the hormone level. PGPB can likewise animate 
plant development by communicating the compound ACC 
deaminase that severs ACC to α-ketobutyrate and alkali, 
diminishing the ET level in plants.[137-140] Usually, plants 

synthesize low ET that is valuable for plant development 
and improvement. Further, amid stress responses in plants, 
the expanded ET biosynthesis is alluded to as “stress 
ET”[138,141] that is a response to biotic and abiotic stress 
conditions.[141,142]

Root Colonization

Rhizobacteria are colonizing plant roots amid various 
phases of plant development and they can proliferate 
on roots to assemble a mutual association among plants 
and microorganisms, where these communications give 
advantages to both the partners as shown in Figure 1.[143,144] 
The mechanism of the microbial group to metabolize and 
vie for carbon sources in the rhizosphere is reliant on the 
synthesis of plant root exudates.[145] Once the microscopic 
organisms colonize the root, they can live on the surface of 
the roots (epiphytic) or can enter into the root and spread 
into the ethereal parts of the plant and vascular tissue 
cortex (endophytic).[146,147] Many researchers observed 
that Gram-negative and Gram-positive microbes enter 
into the root through the primary root, horizontal roots, 
and root hair.[148-150] Furthermore, it has been reported that 
Curvularia proturberata microorganisms colonize with 
the root and defense Dichanthelium lanuginosum and 
Solanum lycopersicum plants from drought and heat stress 
conditions.[83]

Quorum Sensing Mechanism

Quorum sensing is the process of communication between cells 
in bacteria by inducing different chemical. This encourages the 
microbial groups to react rapidly, hinder contending organisms, 
enhance supplement uptake, and adjust to changing ecological 
conditions. Likewise, it controls bacterial size and populace 
status. N-acyl-homoserine lactones (AHLs), 2-heptyl-3-hydroxy-
4-quinoline, and autoinducer-2 are utilized as a part of cell-cell 
communication inside the bacterial group to synchronize a few 
activities and influence them to work more like a solitary unit 
as shown in Figure 1. These signaling particles are exceptional 
among the microbial species. AHLs in Proteobacteria, gamma-
butyrolactones in Streptomyces, cis-11-methyl-2-dodecanoic 
acid in Xanthomonas, and oligopeptides in Gram-positive 
microorganisms are act as signaling molecules.[151]

FUNCTIONS AND ECOLOGY OF THE 
PLANT MICROBIOME

Several functions of the plant microbiome are essential for the 
host. Numerous plants cannot begin their existence without 
the assistance of microorganisms, for example, mosses[152] 
and orchids, which require the assistance of particular fungi, 
regularly Rhizoctonia to germinate.[153] The germination-
advancing fungus Rhizoctonia involves favorable organisms 
and additionally pathogens. To stay away from any pathogenic 

Figure 1: Role of plant microbiome in defense mechanism. 
Microorganism in association with plants activates different 
mechanism in response to abiotic stress conditions. PGPB: 
Plant growth promoting bacteria, ACC: 1-aminocyclopropane-
1-carboxylate PAMPs/MAMPs: Pathogen-associated 
molecular patterns or microbe-associated molecular patterns 
PRR: Pattern recognition receptor AHLs: N-acyl-homoserine 
lactones
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collaboration after germination, the host plant processes their 
helping fungus totally. In these instances of germination 
bolster, microorganisms are basic, and this might be one 
reason that these cornerstone microorganisms are vertically 
transmitted as appeared for Sphagnum.[154] A positive effect 
on germination was additionally found for plant-related 
microbes such as Stenotrophomonas.[155]  The mechanisms by 
which these microorganisms support plant growth include 
the production of phytohormones, the fixation of nitrogen, 
and the mobilization of phosphorus and minerals.[156]

Promote Stress Resistance

The plant microbiome particularly the root microbiome is 
engaged in the protection against biotic stresses, by going about 
as a defensive shield against soil-borne pathogens.[157] The 
components are incorporating different direct communications 
with plant pathogens and also backhanded associations through 
the plant by incitement of the immune system of plants.[158] In 
the recent research it has shown that the microbiome is not 
only involved in coping with biotic stress, it is also involved 
in protection against abiotic stress.[159] For instance, the plant 
microbiome has been appeared to be associated with defense 
against drought as well as high salinities stresses.[160,161] Studies 
reported that the plant microbiome is likewise associated 
with cold acclimation, an essential factor constraining the 
development and yield of crops.

Plant Growth and Development

The plant microbiome also affects the plant secondary metabolites 
that result in the development of different metabolism in plant. 
It has been accounted for the flavor of strawberries and the 
fabrication of bioactive compounds in medicinal plants.[162,163] In 
an examination on A. thaliana, the rhizosphere microbiomes are 
engaged in insect feeding characteristics, which was most likely 
an aftereffect of microbiome-driven changes in the metabolites 
of leaf.[164] It has been studied that the expulsion of the flower 
microbiome of Sambucus nigra leads to a decreased terpene 
emanation in flower, which pivotally involved in fertilization 
and thus in fruit and seed production.[165]

Plant Phenology

Studies on plant microbiome uncovered the immediate effect 
of the root microbiome on plant phenology. It has been reported 
that soil microbes affect the blooming time of a Boechera 
stricta.[166] Essentially, regarding fruitful transplantation of 
rhizosphere microbiomes from A. thaliana to Brassica rapa 
affected their blossoming times, bringing about comparative 
moves in blooming phenology.[167,168] Coadvancement of 
plants and related microbial groups has been estimated in the 
light of culture-subordinate outcomes got for the rhizosphere 
of wheat cultivars,[169] maize, sugar beet, and lettuce, by the 
use of profound sequencing techniques.[170,171]

CONCLUSION

The unfavorable environmental condition over plant systems 
enhances the synthesis of ROS, leading to toxicity and 
resulting in oxidative damage at cellular level. Plants response 
toward various abiotic stresses by complex of mechanism 
that involves changes at genetic, cellular, metabolic, 
and physiological levels. Plant microbiome provides 
fundamental support to the plants in acquiring nutrients, 
resisting against diseases, and tolerating abiotic stresses. The 
plant and their microbiome are interacted with each other 
through different metabolic cross talk and formed stress 
tolerance strategies. Microbes produced various metabolites 
that act as signals during stress conditions and plants have 
a mechanism to recognize certain compounds released by 
microbes and activate defense mechanism in response to 
stress conditions. Plant-associated microorganisms not only 
involved in stress tolerance but also regulated plant growth 
and development. The metabolism and morphology of plants 
and their microbiome are connected with each other, and both 
maintain the functioning to different crops to improve crop 
productivity under various environmental conditions.
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