Physicochemical analysis of leaves of *Eriobotrya japonica* and antioxidant and antidiabetic evaluation of its methanolic extract

Gopal L. Khatik¹, Amritpal Singh², Navneet Khurana³, Neha Sharma³, Bhupendra Tomar⁴, Pramod Yadav⁵, Manish Vyas², Saurabh Satija⁶

¹Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India, ²Department of Ayurveda, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India, ³Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India, ⁴Department of Quality Assurance, Abhilashi College of Pharmacy, Mandi, Himachal Pradesh, India, ⁵Department of Rasashastra and Bhaishajya Kalpana, All India Institute of Ayurveda, New Delhi, India, ⁶Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India

Abstract

Background: *Eriobotrya japonica* is a traditional medicinal plant known as loquat and used in East Asian countries such as Japan, China, Korea, India, Nepal, and Pakistan. However, standards for *E. japonica* are not published in any of the Indian monographs as the quality of plant-based products may be affected by factors such as location, climate, cultivation, and collection. **Objective:** The objective of the study is to develop the analytical profile and *in vitro* evaluation of antioxidant and antidiabetic potential. **Materials and Methods:** *E. japonica* was subjected to organoleptic, physicochemical, qualitative, and chromatographic evaluation. Further, antioxidant and antidiabetic activities were also evaluated using 2,2-diphenylpicrylhydrazyl and α-amylase inhibition activity, respectively. **Results and Discussion:** The average results of the loss on drying, total ash, acid-insoluble ash, water-soluble extractive value, and alcohol-soluble extractive values were 7.08 ± 0.58%, 8 ± 0.54%, 1 ± 0.31%, 21.6 ± 1.89%, and 11.06 ± 1.28%, respectively. Only one principle spot (Rf = 0.5) was recorded in the thin layer chromatography of *E. japonica*. The observed inhibitory concentration 50% (IC₅₀) of the extract was 0.453 mg/mL whereas IC₅₀ of ascorbic acid (standard) was 0.528 mg/mL. For antioxidant activity, a similar trend was observed in the IC₅₀ of extract 0.015 mg/mL to IC₅₀ of acarbose (standard) 0.058 mg/mL for α-amylase inhibition activity. **Conclusion:** The results suggest that *E. japonica* can have good potential in the treatment of diabetes.

Key words: Amylase, antidiabetic activity, antioxidant activity, *Eriobotrya japonica*

INTRODUCTION

Eriobotrya japonica is a traditional medicinal plant known as loquat and used in East Asian countries such as Japan, China, Korea, India, Nepal, and Pakistan. In India, it is mainly used in Uttar Pradesh, Punjab, and Himachal Pradesh. The traditional healers and Vaidyas of Punjab are using the juice of leaves of *E. japonica* to treat diabetes. Moreover, recent studies based on the antidiabetic effect of *E. japonica* have been suggesting its role to reduce blood glucose.¹⁻³ It also reported to have antioxidant, antiviral,⁴ neuroprotection,⁴⁻⁵ cardiovascular health,⁶ glucose metabolism,⁷⁻⁹ antiobesity,¹⁰ bone and joint strength,¹¹ anti-inflammatory,¹²⁻¹⁵ hormonal activity,¹⁶,¹⁷ peripheral organ systems,¹⁸⁻²² and cancer metabolism activities.²³⁻²⁵

E. japonica is a small, short-trunked, upward-branching, broadleaf evergreen tree that typically grows to 10–25' tall.
in a round form [Figure 1]. It also grows as a huge shrub. Generally, it is known for its compact size, foliage, flowers, and fruits.

Leaves are lanceolate, oblong to wide, length 12–30 cm, width 4–9, and pointed apex, and the leaf base is wedge-shaped, serrate margin with short petiole; color of upper surface is green to green-brown whereas lower surface is light green-brown showing the presence of brown woolly hairs; vein is prominent at lower surface and color is light yellow-brown [Figure 2]; it is slight odor and tasteless. The fragrance of the flower is sweet, petals are five in number, the color of the flower is white, panicles are large (to 6” long), and it blooms between October and November.

Fruits are small, spherical (pear-shaped); the length is 1–2” long, juicy, and fleshy. Fruits ripen in the spring season. Color of the fruit is yellow to orange skin, whereas seeds are one to several in number and large.[26]

The monograph of *E. japonica* is mentioned in the Japanese Pharmacopoeia. However, standards for *E. japonica* is not published in any on the Indian monographs as the quality of plant-based products may be affected by factors such as location, climate, cultivation, and collection. Hence, there is a need to develop the standards for *E. japonica* as per the climatic conditions on India. Hence, the present study was designed to develop the physicochemical, qualitative, and chromatographic standards for *E. japonica*. Further, the extract was also evaluated for the *in vitro* antioxidant and antidiabetic activity.

MATERIALS AND METHODS

Plant Material

The leaves of *E. japonica* were collected from the village Kotla Naudh Singh District. Hoshiarpur (Punjab), and authenticated from National Institute of Pharmaceutical Education and Research, Mohali.

Organoleptic Study

The leaves of *E. japonica* were observed for their organoleptic parameters, including color, odor, taste, and texture.

Physicochemical Analysis

Various physicochemical parameters were analyzed to find out the identity, purity, and strength of the *E. japonica*, i.e., foreign matter, loss on drying, total ash, acid-insoluble ash, water-soluble extractive value, and alcohol-soluble extractive value.[27,28] All tests were repeated for six times.

Qualitative Analysis

Various chemical constituents were analyzed in aqueous and alcoholic extract for the phytochemical screening to establish a chemical profile of *E. japonica*, including flavonoids, alkaloids, tannins, phenol, reducing sugars, saponins, protein, phytosterols, and glycosides.[29]

Extraction of the *E. japonica*

The fresh leaves of *E. japonica* were crushed and extracted with methanol using the Soxhlet extraction method for 24 h. The obtained extract was filtered, and the filtrate was evaporated on a rotary evaporator.[30]

Thin Layer Chromatography

Thin layer chromatography (TLC) was used for the qualitative analysis by enhancing the separation and resolution of the compounds with a fine particle size of stationary phase.[31] The mobile phase was used as a mixture of water:acetonitrile (3:2), and dilute sulfuric acid (10%) was used as a spray reagent.[32]
Preparation of Sample

Ten milligrams of dry methanolic extract of E. japonica was taken and dissolved in 10 ml of the methanol. Thereafter, it was filtered by using Whatman filter paper and the filtrate was concentrated on a water bath and stored in a closed container.

In vitro Antioxidant Activity

2,2-diphenylpicrylhydrazyl (DPPH) radical scavenging assay

200 µl of analytical sample was added into a test tube containing 800 µl of 0.1 M Tris-HCl buffer (pH 7.4). In this solution, 1 ml of ethanolic DPPH solution was added immediately and test tube was shaken for 10 seconds. Then solution kept in dark place at room temperature for 30 minutes, and thereafter absorbance was recorded at 517 nm. For blank 1.2 ml of ethanol and 800 µl 0.1M Tris-HCl buffer were taken and absorbance was recorded at 517 nm. All samples were done in triplicates. Percentage of inhibition was calculated by using following formula.

\[
\% \text{ Inhibition} = \left(\frac{A_{\text{control}} - A_{\text{extract}}}{A_{\text{control}}} \right) \times 100
\]

In Vitro α-Amylase Inhibition Assays (Antidiabetic Activity)

Starch-iodine method was used for the determination of α-amylase inhibition activity. A 10 µL of α-amylase solution (0.025 mg/ml) was mixed with 390 µL of phosphate buffer containing different concentrations of methanolic extract of E. japonica. After incubation at 37°C for 10 min, 100 µL of the 1% starch solution was added and re-incubated for 1 h. After re-incubation, 0.1 mL of 1%, iodine solution was added, and further, it was diluted with 5 ml distilled water. The absorbance of all the solutions was measured at 565 nm, and % inhibition was calculated by the following formula.

\[
\% \text{ Inhibition} = \left(\frac{A_{\text{control}} - A_{\text{extract}}}{A_{\text{control}}} \right) \times 100
\]

RESULTS AND DISCUSSION

Organoleptic Characteristics

The organoleptic characteristics of raw material, such as color, odor, taste, and texture are mentioned in Table 1. The plant leaves have dark green color at the dorsal surface whereas light green at the ventral surface with a smooth texture. Odor found to be a characteristic, and the taste was bitter.

Physicochemical Study

Standards of the physicochemical analysis of E. japonica were not found in Ayurvedic Pharmacopoeia of India. However, physicochemical parameters were performed during the study, and the results of the analysis are mentioned in Table 2. No foreign matter was found in the sample. The average results of the loss on drying, total ash, acid-insoluble ash, water-soluble extractive value, and alcohol-soluble extractive value were 7.08 ± 0.58%, 8 ± 0.54%, 1 ± 0.31%, 21.6 ± 1.89%, and 11.06 ± 1.28%, respectively.

Phytochemical Screening for E. japonica

Qualitative analysis of E. japonica revealed the presence of tannins, flavonoids, coumarins, steroidal glycosides, alkaloids, protein, quinones, saponins, and reducing sugars. The results of qualitative tests are mentioned in Table 3. A methanolic extract found to contain a similar composition of phytochemical. Saponins were absent in the extracts.

Chromatographic Analysis

One principle spot Rf was recorded in the TLC of E. japonica extract in visible daylight after spray. However, under the short UV wavelength and long UV wavelength, there was no sport observed, as represented in Table 4, and Figure 3.
Khatik, et al.: Antidiabetic evaluation of Eriobotrya japonica

Different concentrations of ascorbic acid as standard and E. japonica methanolic extracts were used to check its antioxidant activity by DPPH assay. Inhibitory concentration 50% (IC₅₀) of extract was 0.453 mg/mL whereas IC₅₀ of ascorbic acid (standard) was 0.528 mg/mL. % inhibition of extract was comparatively high than standard [Table 5 and Figure 4].
α-Amylase Inhibition Assay

To evaluate and compare the anti-diabetic activity, α-amylase assay was performed. The extract had high % inhibition as compared to acarbose. IC\textsubscript{50} of extract was 0.015 mg/mL whereas IC\textsubscript{50} of acarbose (standard) was 0.058 mg/ml [Table 6 and Figure 5].

<table>
<thead>
<tr>
<th>Concentration (mg/ml)</th>
<th>Percentage inhibition (acarbose)</th>
<th>Percentage inhibition (Eriobotrya japonica methanolic extract)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.075</td>
<td>58.5</td>
<td>73.13</td>
</tr>
<tr>
<td>0.15</td>
<td>67.76</td>
<td>78.05</td>
</tr>
<tr>
<td>0.3</td>
<td>74.92</td>
<td>91.34</td>
</tr>
<tr>
<td>0.45</td>
<td>86.86</td>
<td>100.58</td>
</tr>
<tr>
<td>0.6</td>
<td>100.34</td>
<td>100.89</td>
</tr>
<tr>
<td>0.75</td>
<td>100.74</td>
<td>100.44</td>
</tr>
</tbody>
</table>

CONCLUSION

E. japonica is a traditional medicinal plant, and its different parts are used to treat diverse pathophysiology and also consumed as a food product in daily life. The present study was focused on the development of its physicochemical, qualitative, and chromatographic standards, including the antioxidant and anti-diabetic effect profile. The average results of the loss on drying, total ash, acid-insoluble ash, water-soluble extractive value, and alcohol-soluble extractive value were 7.08 ± 0.58%, 8 ± 0.54%, 1 ± 0.31%, 21.6 ± 1.89%, and 11.06 ± 1.28%, respectively. Only one principle spot (RF = 0.5) was recorded in the TLC of E. japonica methanolic extract in visible daylight after spray. Moreover, the antioxidant activity and anti-diabetic effect of E. japonica were comparable with standards in DPPH inhibition and α-amylase inhibition, respectively. The observed IC\textsubscript{50} of the extract was 0.453 mg/mL, whereas the IC\textsubscript{50} of ascorbic acid (standard) was 0.528 mg/mL. For antioxidant activity, a similar trend was observed in the IC\textsubscript{50} of extract 0.015 mg/mL to IC\textsubscript{50} of acarbose (standard) 0.058 mg/ml for α-amylase inhibition activity. The results suggest that E. japonica can have good potential in the treatment of diabetes.

REFERENCES